Daily Archives: December 18, 2015

Recent Publications

From Alexandra Villiard’s doctoral work: Villiard A and R Gaugler. 2015 Long-term effects of carbohydrate availability on mating success of newly eclosed Aedes albopictus (Diptera: Culicidae) males. Journal of Medical Entomology, 52(3): 308-314, DOI: http://dx.doi.org/10.1093/jme/tjv030

Abstract

aedesflower

Photo by Ary Faraji (yes, it is a female albopictus)

“Sugar availability varies greatly in nature, and determining how this affects male mosquito fitness is essential for understanding population dynamics. We allowed male Aedes albopictus (Skuse) carbohydrate access for increasing intervals of time immediately after eclosion and we evaluated their fitness by comparing mortality, mating success, and sperm transfer. We compared individual male Ae. albopictus, which were offered water or 20% sucrose solution for 24, 48, or 72 h. As predicted, there were significant increases in fitness for each additional day of sucrose access. Following sugar exposure, we allowed males daily access to three virgin females. We assessed mating success through observation of spermatozoa in the female spermathecae. When individuals of the same age were compared, males with sugar access exhibited significantly greater mating success than water-treated males in all treatments. The total number of spermathecae filled by males with sugar access in the 48- and 72-h treatments was also significantly greater on some days; these were 3–5 d posteclosion in the 48-h treatment and 5–6 d posteclosion in the 72-h treatment. We conclude that extended sugar access at eclosion is important for maximizing fitness in male Ae. albopictus and should be applicable to sterile male release efforts, especially when laboratory-reared males suffered from other disadvantages. We recommend retaining adult males for 3 d posteclosion prior to release to improve their mating success in male release initiatives.”

Advertisements

Recent Graduates

Congratulations to Scott Crans for finishing his MS on “Spinosad: Efficacy and persistence against container-inhabiting mosquitoes” under Dr.  Robson and to Alexandra Villiard for finishing her Ph.D. on “The influence of carbohydrate requirements on Asian tiger mosquito behavior and fitness” under Dr. Gaugler.  It is always an accomplishment to finish the work and kudos on their graduation!

Drones and Mosquito Control

Video from  Facebook Site Mosquito Drones showing precise briquette application.

Drones or UAVs (unmanned aerial vehicles) represent the potential for targeting precise pesticide application to specific areas, reducing exposure to non-targeted areas and overall pesticide use. Dr. Randy Gaugler is heading a project for the use of UAVs for more precise pest control. These areas, often in large swamp or saltmarsh topographies, can represent significant costs to mosquito control programs when traditional methods of application are used, including aircraft and pilots. But UAVs can potentially eliminate much of that cost. Dr. Gaugler says “…when Greg Williams brought multi-rotors to my attention, particularly their ability to fly autonomous missions, I saw the potential for precision mosquito control. Small, agile, inexpensive, fully autonomous, easy to program missions, low maintenance—what was not to like?”
Dr. Greg Williams is the Superintendent of the Hudson Mosquito Control agency and a CVB member. He is responsible for designing and constructing the UAVs, along with help from other Center members, including Scott Crans, Ary Faraji, Devi Suman, Ishik Unlu and Yi Wang. The project’s critical mission is to target specific areas with application technology to reduce the environmental impact as well as time and dollars involved. This technology includes a carbon fiber 850 mm hexacopter with an underwater camera for surveying mosquito larval populations, the ability to dispense liquid or briquette pesticides and the use of GPS systems to determine and record flight patterns. Flights can be autonomous through a 3DR Pixhawk autopilot. This allows mosquito control agencies more flexibility and ease of use with the UAVs with a shallower learning curve.